Público
Público

Por qué la teoría de la evolución aún es válida

En 2009 se celebran 200 años del nacimiento de Charles Darwin y 150 de ‘El origen de las especies’. ‘Nature’ recopila ejemplos de estudios recientes que muestran la validez de la evolución por selección natur

DANIEL MEDIAVILLA

La mayoría de los biólogos considera un hecho que todas las formas de vida que se conocen son el fruto de una evolución por selección natural desarrollada durante miles de millones de años. La teoría, ideada por separado por los británicos Charles Darwin y Alfred Russell Wallace, ha acumulado evidencias que la fortalecen durante siglo y medio, pero aún existen grupos (en su mayoría, ajenos a la biología) que cuestionan su validez.

Con motivo del 200 aniversario del nacimiento de Darwin y con el fin de mostrar que la teoría de la evolución por selección natural es un principio validado empíricamente, la revista Nature ha recopilado 15 ejemplos publicados en la última década que sustentan la tesis.

Uno de estos ejemplos es el que hace referencia a los pinzones de las Galápagos, también conocidos como pinzones de Darwin (en la infografía). Cuando el científico llegó a las Galápagos a bordo del Beagle, observó que en las islas existían varias especies de pinzones con aspectos muy parecidos salvo por sus picos.

Cada tipo de pinzón lo tenía diferente en función de su dieta: los que vivían en el suelo lo tenían ancho, los que habitaban en zonas de cactus lo tenían alargado... Darwin planteó que todos tendrían un antepasado común que habría emigrado a la isla tiempo atrás. Después, por selección natural, habrían comenzado a aparecer las nuevas especies. Desde entonces, el caso de los pinzones se ha convertido en un ejemplo clásico para explicar la aparición de nuevas especies a partir de un tronco común como método de adaptación a los distintos nichos ecológicos.

La evolución es una carrera de armamentos. Si el depredador mejora su técnica de caza, la víctima potencial se verá obligada a mejorar sus cualidades elusivas. En 2007, investigadores belgas observaron una de estas competiciones: la que enfrenta a la pulga de agua con los parásitos que la infectan. Cada vez que la pulga lograba mejorar su respuesta a las infecciones, los parásitos mejoraban su capacidad para aprovecharse del organismo de los crustáceos.

Confirmando las predicciones teóricas, los parásitos lograron adaptarse a su huésped en un periodo de pocos años. Su capacidad para infectar a las pulgas cambiaba poco con el paso del tiempo, pero la virulencia y la aptitud del parásito se incrementó progresivamente, siendo siempre igualada por la capacidad de las pulgas para resistir.

Investigadores británicos observaron que la variación genética de los carboneros de un bosque en Oxfordshire era distinta en diferentes partes de la espesura. Esta pauta de variación conducía a diferentes respuestas a la selección natural en distintas zonas del bosque.

El efecto se veía reforzado por la ‘dispersión no aleatoria’: pájaros individuales se seleccionan y se reproducen en diferentes hábitats para mejorar su adaptación. Los científicos observaron que cuando el flujo genético no es homogéneo, la diferenciación evolutiva puede producirse en periodos muy breves.

Una de las críticas iniciales a la teoría evolutiva era la ausencia de rasgos de transición que ilustrasen el paso de un grupo de animales a otro. Sin embargo, poco después de la publicación de ‘El origen de las especies’, se descubrió el primer fósil de ‘Archaeopteryx’, un animal que unía características de los reptiles, como los dientes, con las plumas propias de las aves.

Aunque ‘Archaeopteryx’ es considerado el primer ave conocida, muchos afirmaron que podía tratarse de un dinosaurio con plumas. Desde entonces, nuevos hallazgos han apuntalado la hipótesis de los dinosaurios plumíferos. El año pasado se anunció el hallazgo de ‘Epidexipteryx’, un pequeño dinosaurio de vistoso plumaje que podía serle útil en sus conquistas.

Las ballenas llevan millones de años viviendo en los océanos, pero las evidencias recogidas por los investigadores muestran que, como mamíferos que son, su árbol genealógico surgió en tierra firme. Los abundantes fósiles de los primeros diez millones de años de evolución de las ballenas cuentan la historia de criaturas acuáticas como el ‘Ambulocetus’, con características que hoy en día sólo se encuentran en las ballenas y extremidades similares a las de los animales terrestres que son sus ancestros. Menos conocidos eran los animales terrestres que se encuentran en una etapa anterior del proceso evolutivo de estos cetáceos.

El ‘Indohyus’ era un animal con algunas características parecidas a las de vacas, ciervos u ovejas, que pasaba gran parte de su vida en el agua. Pese a tener muchas similitudes con las ballenas, su dieta era muy diferente. Esto sugiere que fue un cambio de dieta lo que les impulsó a instalarse definitivamente en el agua. El estudio de ‘Indohyus’, publicado en 2007 en ‘Nature’, demuestra que en el registro fósil existen potenciales especies de transición.

La selección natural obliga a mejorar al material disponible, no produce soluciones óptimas. Por eso a los tetrápodos, cuando llegaron a la tierra, no les crecieron ruedas sino patas. Un caso de la adaptación del material disponible es el de la ‘Muraena retifera’.

Al ser demasiado estrecha y alargada, la cavidad de su boca es muy pequeña para succionar a sus presas a su interior, como hacen otros peces. Como solución, estos animales han desarrollado una segunda mandíbula que surge del interior de su boca y arrastra a sus presas para engullirlas.

Los hallazgos de los últimos 20 años indican que los primeros tetrápodos desarrollaron sus patas cuando aún vivían en el agua. Hasta ahora los pioneros de la vida terrestre sólo se conocían por pequeños fragmentos fósiles mal conservados.

Descubrimientos recientes han permitido conocer a ‘Tiktaalik’, un depredador acuático con muchas similitudes con los tetrápodos, que muestra con claridad una fase esencial de la transición del agua-tierra.

¿Te ha resultado interesante esta noticia?