Este artículo se publicó hace 15 años.
En busca del cerebro artificial
España se suma a un proyecto internacional para desarrollar el simulador neuronal más perfecto
Siguiendo la senda marcada por Santiago Ramón y Cajal, que revolucionó la neurología hace más de un siglo con sus descripciones de las neuronas y la forma en que están interconectadas, científicos de una decena de países, entre ellos España, han decidido unir sus fuerzas para diseñar la réplica funcional del cerebro más perfecta realizada hasta ahora. Armados con algunos de los ordenadores más potentes del mundo, y con microscopios electrónicos de última generación, los investigadores se han propuesto desentrañar la inmensa complejidad del cerebro humano para contar con un simulador que permita, dentro de una década, experimentar el efecto de nuevos fármacos contra enfermedades como el alzhéimer, la esquizofrenia, la depresión o incluso el tumor cerebral.
El proyecto, denominado Blue Brain [Cerebro Azul], empezó a rodar en 2005 de la mano del Centro de Neurociencia y Tecnología de la Escuela Politécnica de Lausana (Suiza) y la empresa informática IBM, aunque ahora afronta su fase decisiva, que se prolongará durante la próxima década y contará con participación internacional. España, que es es el único país aparte de Suiza que se ha sumado a esta investigación de forma institucional, ha decidido aportar 25 millones de euros al proyecto. En él colaboran una docena de grupos de investigación, que trabajarán conjuntamente en una doble dirección. Un primer brazo, dirigido por Javier de Felipe, del Instituto Cajal del CSIC, utilizará un nuevo tipo de microscopio electrónico, hasta ahora usado sólo en nanotecnología, para reconstruir los circuitos sinápticos (sistemas de interconexión entre neuronas). "El problema", explica De Felipe, "es la enorme complejidad del análisis, ya que una sinapsis tiene un diámetro de media milésima de milímetro y una sola neurona, aunque forme pocas sinapsis, puede recibir incluso 100.000 de estos enlaces".
Los científicos cuentan con la ayuda de dos superordenadores"Una revolución"Sin embargo, gracias al nuevo microscopio, llamado Cross Beam y desarrollado por Zeiss, se puede analizar en días lo que antes costaba años. "Ya tenemos resultados preliminares estupendos; esto va a representar una verdadera revolución en el conocimiento de la estructura del cerebro", añade el investigador. El microscopio puede analizar franjas de tejido neuronal de sólo 20 nanometros de grosor, permitiendo realizar reconstrucciones tridimensionales de las neuronas y las sinapsis nunca vistas hasta ahora. Al principio los investigadores trabajarán con tejidos de animales como ratas y ratones, para ir pasando a especies más complejas como gatos o primates antes de investigar las muestras humanas. El análisis se centrará en las columnas corticales, las unidades básicas de funcionamiento de la corteza cerebral en mamíferos.
Una vez obtenidos los datos entran en juego los integrantes del segundo eje del estudio, encabezados por José María Peña, profesor de la Facultad de Informática de la Universidad Politécnica de Madrid. Con ayuda del segundo ordenador más potente de España, Magerit, capaz de hacer 16 millones de operaciones por segundo, los científicos procesarán la ingente cantidad de datos a través de un software que constituye el verdadero esqueleto del sistema de simulación. "El software permite reconstruir el volumen de tejido neuronal, así como refinar y alimentar el proceso de simulación y ver qué conexiones tienen las neuronas y cuál es su densidad en determinado tipo de estructura", señala Peña, que sostiene que estas herramientas permitirán una "industrialización del proceso de toma de datos en el campo de la neurología". "Una vez que tengamos el modelo de simulación", añade Peña, "podremos, por ejemplo, ver qué efecto ha tenido determinado fármaco en el cerebro, qué neuronas se han activado, con qué frecuencia y en función de qué patrones".
España aporta 25 millones y una docena de grupos de investigaciónEl superordenador suizoLos españoles trabajarán mano a mano con sus colegas de otros países y, sobre todo, con el equipo suizo que lidera el Blue Brain a nivel mundial. Este grupo, encabezado por el profesor Henry Markram, que participó ayer en Madrid en la presentación del proyecto, cuenta desde el principio con la ayuda del ordenador de IBM Blue Gene, uno de los más potentes del mundo, con capacidad para realizar casi 23.000 millones de operaciones por segundo.
Sin embargo, este superordenador, que trabajará junto con el Magerit de la Politécnica de Madrid, no será suficiente para culminar el proyecto. "En dos o tres años habrá que cambiar de ordenador en Lausana y saltar a la siguiente generación de Blue Gene. Creemos que antes de concluir esta investigación harán falta dos o tres generaciones de Blue Gene y un tercer salto a una arquitectura completamente diferente; un ordenador que hoy aún no se ha podido desarrollar", señala Peña.
El proyecto culminará en una herramienta de uso clínico generalizadoEl modelo Genoma HumanoSegún el rector de la UPM, Javier Uceda, la participación española en el proyecto se materializará gracias a la aportación de un fondo de 25 millones de euros por parte del Ministerio de Ciencia e Innovación. Tal como señala Peña, se trata de un crédito sin interés que la UPM podrá devolver en diez años gracias a la tecnología que generará el propio proyecto, de forma similar a lo que ocurrió con el proyecto Genoma Humano. "Habrá tecnología patentada para desarrollar investigación y ensayos clínicos, como ha ocurrido con el proyecto Genoma y la secuenciación del ADN; llegará a ser una herramienta clínica de uso generalizado", dijo.
Por su parte, el presidente del CSIC, Rafael Rodrigo, destacó que el proyecto reúne todas los tópicos de la buena investigación, ya que es ambicioso, multidisciplinar, cooperativo y tiene carácter internacional.
La reconstrucción del universo de las neuronas22,8 teraflops
El principal ordenador del proyecto, el Blue Gene de IBM, ubicado en Lausana (Suiza), tiene una velocidad de procesamiento de 22,8 teraflops, lo que equivale a 22.800 millones de operaciones por segundo. Este ordenador trabajará de forma coordinada con Magerit, el segundo ordenador más potente de España, que alcanza los 16 teraflops.
20 nanómetros
El grosor de las láminas de tejido que es capaz de analizar el microscopio Cross Beam es de 20 nanómetros. De él se servirán los investigadores del Cajal Blue Brain (la parte española del proyecto internacional) para recopilar datos sobre las neuronas y las sinapsis.
4 milímetros
Grosor de la corteza cerebral, gracias a la cual los seres humanos desarrollan las funciones cerebrales superiores como el aprendizaje o la memoria. Contiene miles de millones de neuronas.
60.000 neuronas
Las neuronas de la corteza cerebral se agrupan en las llamadas columnas corticales, unidades básicas de tejido en las que se van a centrar los investigadores del Blue Brain. En el caso de los seres humanos, cada columna alberga unas 60.000 neuronas.
100.000 sinapsis
Una neurona no forma muchas sinapsis (alrededor de un millar) pero puede recibir muchas más, incluso hasta 100.000 de estos enlaces.
Comentarios de nuestros suscriptores/as
¿Quieres comentar?Para ver los comentarios de nuestros suscriptores y suscriptoras, primero tienes que iniciar sesión o registrarte.