Este artículo se publicó hace 12 años.
A un paso de los chips fotónicos fabricados en masa
Investigadores de la Universidad Politécnica de Valencia y una multinacional han dado un "paso clave" hacia el desarrollo masivo de chips fotónicos integrados. La novedad es el diseño de nuevas líneas de retardo (rale
Sinc
Un equipo del Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM) de la Universidad Politécnica de Valencia (UPV) y la multinacional Thales publican esta semana en la revista Nature Communications un estudio sobre "filtros integrados basados en líneas de retardo de cristales fotónicos" que puede ser "clave" para desarrollar chips más avanzados en el futuro. El equipo ha diseñado y fabricado nuevas líneas de retardo con cristales fotónicos que abren un "abanico inmenso de posibilidades en el campo de la fotónica de microondas" al posibilitar la integración en chip de todas las funcionalidades que se realizan en este campo. Esto se aplica especialmente en las telecomunicaciones de banda ancha, donde la reducción de tamaño, consumo y el coste que puede comportar es un factor decisivo en su éxito comercial.
"Las líneas de retardo ralentizan la luz y esto se consigue normalmente con un elemento dispersivo. Esto significa que si la luz que utilizo tiene un color -longitud de onda-, tarda una determinada cantidad tiempo en propagarse por un medio; si empleo otro color, tarda más o menos. Según queramos que la luz se retrase más o menos, hemos de cambiar la longitud de onda", explica José Capmany, investigador del instituto iTEAM de la UPV. Uno de los elementos dispersivos utilizados para ralentizar la velocidad de la luz es la fibra óptica. "El inconveniente es que necesitas kilómetros de fibra para tener retardos apreciables, lo cual impide incorporar las funcionalidades que requieres en un chip", apunta Capmany.
Superación de una barrera tecnológicaLos investigadores han conseguido superar esta barrera tecnológica, desarrollando un componente de 1,5 mm que permite obtener una funcionalidad equivalente a lo que serían kilómetros de fibra óptica. "Lo hemos conseguido con una guía-onda de cristal fotónico de diseño especial y muy bajas pérdidas que se integra en un chip", añade Salvador Sales, investigador del iTEAM y otro de los autores. El avance conseguido por los investigadores españoles, junto a otros franceses, resulta de especial relevancia para el sector de las comunicaciones móviles o inalámbricas en general. También en radar tanto civil como de defensa, en el campo de los sensores que funcionan con radiofrecuencia RFID, en aplicaciones aeroespaciales y para la comunicación vía satélite.
"Nuestro componente puede integrarse en un chip y permite reducir el coste y consumo energético de los equipos", añade Capmany. Además, los hace mucho más estables y robustos, y permite compaginarlos con componentes electrónicos en un mismo sustrato para poder diseñar y producir subsistemas "de gran flexibilidad e inteligencia". El desarrollo de esta tecnología es fruto del trabajo realizado en el proyecto europeo GOSPEL, cuyo objetivo es "gobernar" la velocidad de la luz mediante tecnologías "innovadoras y pioneras", y del proyecto Aplicaciones avanzadas y emergentes de la fotónica de microondas, dentro del programa grupos de excelencia científica PROMETEO financiado por la Generalitat Valenciana.
Comentarios de nuestros suscriptores/as
¿Quieres comentar?Para ver los comentarios de nuestros suscriptores y suscriptoras, primero tienes que iniciar sesión o registrarte.