Público
Público

Neuroprótesis ¿Te implantarías un chip en el cerebro?

Nuevas prótesis cerebrales inalámbricas prometen liberar de su encierro a personas paralizadas, manejar drones y conectarnos a internet con el pensamiento. Estas neurotecnologías implican desafíos éticos y, posiblemente, una revolución social.

El ingeniero Vincent Leung trabaja en la próxima generación de implantes cerebrales inalámbricos. Qualcomm Circuits Lab

AGENCIA SINC

En abril pasado, Vincent Leung regresó a su casa después de un largo día de trabajo. Este ingeniero electrónico y director del Qualcomm Institute Circuits Labs de la Universidad de California en San Diego (EEUU) solo quería descansar y comer con su familia. Se cambió, preparó una cena ligera, se sentó en el sofá, encendió el televisor y se puso a ver un episodio de la serie distópica Black Mirror en el que una madre sobreprotectora hacía que le implantaran a su hija un chip en la cabeza para vigilar todo lo que la niña observaba. Entonces, mientras Leung al fin se relajaba, un grito alteró la tranquilidad de su hogar. “¡Es lo que tú haces!”, le gritó su esposa, que estaba justo a su lado.

Vincent Leung no lo niega. “Eso es ficción –aclara–. Pero es cierto, estamos haciendo cosas más locas que las que se ven en la serie”. Leung es uno de varios investigadores que recorren las fronteras de lo científicamente posible al desarrollar neurotecnologías cada vez más potentes.

Financiado por la Agencia de Proyectos de Investigación Avanzada de Defensa del Pentágono (DARPA), Leung trabaja en la próxima generación de implantes cerebrales inalámbricos. Los llama neurograins, o neurogranos, y son chips del tamaño de un grano de sal.

Los neurograins son la próxima generación de implantes cerebrales inalámbricos

Durante décadas, Leung se dedicó a mejorar la potencia de los chips de los teléfonos móviles. Ahora, asegura, es tiempo de diseñar chips para el cerebro. Con los años, las tecnologías se han ido acercando al cuerpo. Hasta no hace mucho, para atender una llamada uno tenía que caminar hacia el teléfono fijo. Ahora solo basta con sacar el móvil del bolsillo y llevarlo al oído o conversar directamente a través de pequeños audífonos en nuestras orejas. Todo indica que la próxima fase de las telecomunicaciones irá más allá: las tecnologías traspasarán la piel y se internarán dentro de nuestros cuerpos.

Neurogranos que al implantarse en la capa externa del cerebro, permitirían estimular neuronas atrofiadas y registrar su actividad eléctrica. SINC

Neurogranos que al implantarse en la capa externa del cerebro, permitirían estimular neuronas atrofiadas y registrar su actividad eléctrica. SINC

“Es un gran desafío científico, dice Leung. En un principio, la idea es implantar los neurograins en la corteza cerebral, es decir, la capa externa del cerebro, de personas que han perdido cierta función debido a una lesión o enfermedad. Y a través de diminutos pulsos eléctricos, estimular las neuronas atrofiadas”.

El equipo de Leung en la Universidad de California en San Diego forma parte de una amplia colaboración internacional, en la que también participan la Universidad de Brown, el Hospital General de Massachusetts, las universidades de Stanford y Berkeley y el Centro Wyss de Bioingeniería en Ginebra, para desarrollar prótesis neuronales inalámbricas capaces de registrar y estimular la actividad del cerebro.

Decenas de miles de neurograins podrían funcionar como una especie de intranet cortical, coordinada de forma inalámbrica mediante un centro de comunicaciones central en forma de un parche electrónico delgado colocado sobre la piel. Así se abrirían nuevas terapias de neurorrehabilitación, en especial teniendo en cuenta que esta red tiene capacidades tanto de ‘lectura’ como de ‘escritura’.

Se podrían transmitir datos a los neurograins y proyectar sonidos a personas sordas o imágenes a invidentes

Los neurograins podrían ‘leer’ a las neuronas, esto es, registrar su actividad eléctrica, y también podrían estimularlas. “Podríamos transmitir datos del mundo exterior a los neurograins, indica Leung. Por ejemplo, proyectar sonidos a personas sordas o imágenes a invidentes: si una persona ciega tiene su corteza visual intacta podríamos tomar una foto con una cámara y por vía inalámbrica mandar una señal codificada en un lenguaje que el cerebro pueda entender”.

Cerebros conectados a un ordenador

En 2004, Matthew Nagle, un hombre de 25 años tetrapléjico tras un incidente en el cual fue herido con un cuchillo, se convirtió en la primera persona en mover objetos solo con el pensamiento. El neurocientífico John Donoghue, de la Universidad de Brown, le implantó en la parte del cerebro donde se coordina la actividad motora lo que denomina BrainGate: un minúsculo chip de silicio de cuatro milímetros de lado con cien electrodos.

Trece personas paralizadas utilizan el sistema BrainGate, la primera interfaz cerebro-ordenador. Un chip de silicio implantado en el cerebro les permite ejecutar acciones con el pensamiento. / BrainGate

Un chip de silicio implantado en el cerebro les permite ejecutar acciones con el pensamiento. BrainGate

Se trató de la primera interfaz cerebro-ordenador: un sistema a través del cual se procesan y envían señales que viajaban por un haz de cables que salían del cuero cabelludo de Nagle hasta un carrito electrónico con un tamaño de refrigerador que le permitía, entre otras cosas, cambiar los canales de un televisor, ajustar el volumen, abrir y cerrar una mano ortopédica, mover el cursor de un ordenador, leer correos electrónicos y jugar con videojuegos con solo imaginar que movía el brazo. 

"No solo nos permitirá comunicarnos mente a mente, sino también conectarnos a internet a través del cerebro"

Desde entonces, estas neurotecnologías no han hecho otra cosa que diversificarse. Además de las trece personas paralizadas que utilizan el sistema BrainGate, dos monos con implantes cerebrales en la Universidad de Duke fueron capaces de dirigir sillas de ruedas usando solo sus mentes. “Estas tecnologías abrirán todo un mundo de posibilidades", asegura el emprendedor Steve Hoffman de la start-up Founders Space. No solo nos permitirá comunicarnos mente a mente, sino también conectarnos a internet a través del cerebro”.

Estas afirmaciones parecen algo exageradas, sacadas de películas como The Matrix o de novelas ciberpunks como Down and Out in the Magic Kingdom, un futuro cercano en el que todo el mundo está las 24 horas conectado a la red a través de un enlace cortical, hasta que uno se entera de iniciativas de DARPA como un programa con un presupuesto de cuatro millones de dólares llamado Silent Talk, cuyo objetivo es “permitir la comunicación de usuario a usuario en el campo de batalla sin el uso de voz vocal a través del análisis de señales neuronales”.

En la última década las interfaces cerebro-ordenador se han diversificado: empresas como Emotiv y NeuroSky han desarrollado videojuegos basados en estas neurotecnologías, al igual que la compañía japonesa Neurowear que desarrolló en 2011 unas orejas de gato llamadas Necomimi que responden a las emociones de sus usuarios. 

Estos implantes inalámbricos podrían cambiar la forma en que entendemos nuestros cuerpos

En este tiempo, la miniaturización se ha acelerado. En 2011, un equipo de la Universidad de California en Berkeley describió por primera vez unas diminutas partículas de silicio que denominaron neural dust (polvo neuronal), a grandes rasgos basadas en los mismos principios de los neurograins.

En 2017, dos de sus inventores, el neurocientífico José Carmena y el ingeniero Michel Maharbiz, inauguraron la compañía Iota Biosciences para desarrollar estos implantes inalámbricos que podrían cambiar la forma en que entendemos nuestros cuerpos: son capaces de monitorizar en tiempo real músculos, órganos y nervios en las profundidades del cuerpo. Podrán tratar la epilepsia y el control de vejiga y, también en un futuro, controlar prótesis.

Diminutas partículas de silicio llamadas polvo neuronal basadas en los mismos principios de los neurogranos. UC Berkeley

Partículas de silicio llamadas polvo neuronal basadas en los mismos principios de los neurogranos. UC Berkeley

Los sensores de este polvo neuronal se comunican a través de ultrasonido con un parche que los activa y recibe información para cualquier terapia deseada. Sus impulsores imaginan que podrían ser implantados en un simple procedimiento ambulatorio, según Carmena, de la misma manera que una persona se hace un piercing o un tatuaje.

Esperanzas y amenazas

Las posibilidades de las interfaces cerebro-ordenador han atraído el interés de Elon Musk. En 2017, el multimillonario sudafricano, fundador de SpaceX y Tesla, reveló detalles de una nueva empresa, Neuralink, en San Francisco: construir una interfaz cerebro-ordenador implantable que nos permita comunicarnos de forma inalámbrica con cualquier cosa que tenga un chip. Esta simbiosis sería, según Musk, como nuestro seguro ante el “riesgo existencial” que significa el avance de la inteligencia artificial. Elon Musk quiere construir una interfaz que permita transmitir imágenes de la retina de una persona al cerebro de otra.

Suena todo muy sci-fi: en teoría, podríamos absorber conocimiento instantáneamente desde la nube o transmitir imágenes de la retina de una persona a la corteza visual de otra. “Creo que la mejor solución es tener una capa de inteligencia artificial que pueda funcionar biológicamente dentro de nosotros”, dijo Musk. “El primer uso de la tecnología será reparar lesiones cerebrales como resultado de un accidente cerebrovascular”, describió en un artículo extenso publicado en Wait Buy Why.

Así como estas tecnologías abren nuevas posibilidades, también implican nuevos riesgos y problemas éticos

Por el momento, ese también es el objetivo de los investigadores detrás de los neurograins: permitirles a personas paralizadas por esclerosis lateral amiotrófica, embolia cerebral u otros trastornos salir de su encierro y comunicar sus necesidades y deseos a otros, operar programas de procesamiento de textos u otro software, controlar una silla de ruedas o neuroprótesis. “Sería una gran mejora de la calidad de vida”, dice Leung. “Primero lo probaremos en primates no humanos”.

¿Qué vendrá después? El objetivo de DARPA, se presume, consistiría en mejorar las habilidades del personal militar. “Podríamos llegar manejar drones con el pensamiento”, especula Leung, quien admite que el campo de las interfaces cerebro-ordenador es terreno fértil para la ciencia ficción. Pero así como estas tecnologías abren nuevas posibilidades, también implican nuevos riesgos y problemas éticos.

¿Podrían grupos de hackers robar datos internos de un cuerpo, uno de los problemas actuales con los Fitbits, o usar el cuerpo de una persona en contra de su voluntad? “Las prótesis neuronales nos obligan a reevaluar cómo pensamos en la responsabilidad de nuestras acciones”, señala el filósofo Walter Glannon.

Si bien, debido a regulaciones federales, es muy difícil sacar la neurotecnología del laboratorio, los neurograins y el neural dust multiplican las esperanzas y también las amenazas, como la pérdida de la individualidad y privacidad mental.

“Los escenarios abiertos por las interfaces cerebro-ordenador conducen a interesantes preguntas sobre lo que significa ser humano, advierten los especialistas en neuroética Mark A. Attiah y Martha J. Farah en un artículo. ¿Seríamos humanos si pudiéramos hacer que otros se movieran o actuasen a partir de nuestro pensamiento? ¿Seríamos humanos si nuestras mentes nunca operasen independientemente de los demás? Estas neurotecnologías podrían traer cambios sociales tectónicos”.

¿Te ha resultado interesante esta noticia?